
 

Biomedical Statistics and Informatics 
2023; 8(2): 22-30 

http://www.sciencepublishinggroup.com/j/bsi 

doi: 10.11648/j.bsi.20230802.11 

ISSN: 2578-871X (Print); ISSN: 2578-8728 (Online)  

 

  
 

  

 

A Gaussian Copula Regression Approach for Modelling 
Repeated Data in Medical Research 

Reka Karuppusami
1, *

, Gomathi Sudhakar
1
, Juliya Pearl Joseph Johnson

2
, Ramamani Mariappan

3
, 

Jansi Rani
1
, Belavendra Antonisamy

1
, Prasanna S. Premkumar

1
 

1Department of Biostatistics, Christian Medical College, Vellore, India 
2Departments of Anaesthesia, Christian Medical College, Vellore, India 
3Department of Neuroanaesthesia, Christian Medical College, Vellore, India 

Email address: 

 
*Corresponding author 

To cite this article: 
Reka Karuppusami, Gomathi Sudhakar, Juliya Pearl Joseph Johnson, Ramamani Mariappan, Jansi Rani, Belavendra Antonisamy, Prasanna 

S. Premkumar. A Gaussian Copula Regression Approach for Modelling Repeated Data in Medical Research. Biomedical Statistics and 

Informatics. Vol. 8, No. 2, 2023, pp. 22-30. doi: 10.11648/j.bsi.20230802.11 

Received: June 27, 2023; Accepted: July 19, 2023; Published: July 31, 2023 

 

Abstract: In repeated measures data, the observations tend to be correlated within each subject, and such data are often 

analyzed using Generalized Estimating Equations (GEE), which are robust to assumptions that many methods hold. The main 

limitation of GEE is that its method of estimation is quasi-likelihood. The recent framework of the copula is very popular for 

handling repeated data. The maximum likelihood-based analysis for repeated data can be obtained using Gaussian copula 

regression. The purpose of this study is to show the handling and analysis of the repeated data using the Gaussian copula 

regression approach and compare the findings with GEE. The prospective, double-blinded, randomized controlled trial data for 

this study was obtained from the Department of Anesthesia, Christian Medical College, and Vellore. ASA I and II patients were 

randomized into three groups. Hemodynamic parameters were obtained for 88 patients at thirteen-time points. The outcome of 

interest was mean arterial pressure. Both GEE and Gaussian copula regression were compared assuming four different 

correlation structures. The optimal correlation structures were selected with the Akaike Information Criterion (AIC) and 

Correlation Information Criterion (CIC) goodness of fit criteria according to the method of estimation of Gaussian copula 

regression and GEE, respectively. The correlation structures, unstructured and autoregressive, were found to be optimal for 

Gaussian copula regression and GEE based on AIC and CIC criteria values respectively. A comparison between the estimated 

values of the selected models showed no major differences. Gaussian copula regression found that intrathecal morphine has a 

significant reduction in MAP over time, this significance is considered important as the study uses randomized controlled trial 

data. Both methods have almost similar results, but Gaussian copula regression provides better results by identifying 

significant findings associated with the outcome using maximum likelihood estimation that GEE fails to identify using quasi-

likelihood estimation. 
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1. Introduction 

Repeated data arise frequently in biomedical and many 

other research fields. In longitudinal studies, the correlation 

usually occurs when data are collected sequentially from the 

same individual over time. Statistical procedures that fail 

account for the correlation between repeated data points are 

likely to yield invalid conclusions due to parameter estimates 

may be inconsistent with wrong standard error estimates. [1] 

Over the years, there are many statistical methods available 
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for handling and analyzing repeated data such like Repeated 

Measures ANOVA (RM-ANOVA), Mixed Effects Model 

(MEM) and Generalized Estimating Equations (GEE). These 

statistical procedures will be used under some specific 

conditions and properties [2-4]. 

Repeated measure studies are always important and offer 

the chance to observe individual patterns of change over time. 

The generalized estimating equation method is widely used 

in practice for analyzing repeated measurement data. [2, 5, 6] 

The generalized estimating equations have started to replace 

the traditional methods such as Repeated Measures Analysis 

Of Variance as the older method is not flexible enough to 

accommodate all of the features of repeated measure designs 

[7, 8]. But in GEE, the model selection is difficult due to the 

lack of an absolute goodness of fit test to support the 

selection of the best model among several models. [9-11] 

The recent growing framework of the copula approach is 

becoming popular and used to handle repeated measure data. 

[12] The word copula means ‘a bond, link or tie‘, and was 

first employed in a statistical or mathematical sense by Abe 

Sklar in 1959. [12, 13] The copula method is relatively 

different and is applied in various fields such as spatial 

medical, financial, and air pollution. [14-20] A Copula is a 

function that permits us to combine univariate distributions to 

get a joint distribution with a particular dependence structure. 

[21–23] The main advantages of copula methodology in 

modeling repeated data are pointed out here: (1) allowance to 

model both linear and non-linear dependence, (2) capability 

of modeling extreme endpoints, and (3) arbitrary choice of a 

marginal distribution. [21, 22, 24] 

As an alternative to GEE, a Gaussian copula regression 

approach under the copula framework is proposed for 

modeling repeated data. [22] The Gaussian copula regression 

model is very flexible and is used to analyze repeated data 

even with missing values and when the sample size is small. 

The Gaussian copula estimation procedure for the estimation 

of regression parameters in repeated response data using 

various working correlation structure is compared with the 

generalized estimating equations. The objective of this study 

is to show the method of handling repeated data using the 

Gaussian copula regression approach with real data from a 

published randomized controlled trial. [25] 

2. Methods 

2.1. Data 

The data used for this study is from a prospective, double-

blinded, randomized control trial that was conducted over 

two years between November 2016 and November 2018 in 

ASA I and II patients aged between 18-60 years with normal 

renal function who underwent substitutional urethroplasty 

with buccal mucosal graft. Patients were randomized into 

three groups, group-A received systemic morphine 

(0.1mg/kg), group-B received epidural morphine (3mg), and 

group-C received intrathecal morphine (150µg). Repeated 

measurements of hemodynamic parameters (systolic blood 

pressure, diastolic blood pressure, and mean arterial pressure) 

were collected for each patient at thirteen various time points. 

The mean arterial pressure was considered an outcome for 

analysis. This study was approved by the Institutional 

Review Board (IRB Number-10285; dated 21-09-2016) and 

ethics committee of Christian Medical College (CMC) and 

Hospital, Vellore. 

2.2. Study Variables 

Baseline demographic variables, associated co-morbidities, 

and other study characteristics of interest included were age 

(years), BMI (kg/m
2
), previous surgery (yes or no), allergies 

(yes or no), alcohol consumption (yes or no), smoker (yes or 

no), diabetes mellitus (yes or no), hypertension (yes or no), 

and mean arterial pressure (MAP). 

2.3. Statistical Analysis 

The descriptive statistics were reported as Mean ± SD for 

continuous and number (percentage) for categorical data. The 

Pearson Chi-square test and Fisher’s exact test (less cell 

frequency) were used to find the association between 

categorical variables. A One-way analysis of variance was 

performed to find the difference between groups on the 

continuous data. Further, the only significant predictor 

variable, hypertension was included in the model. A line plot 

was used to visualize a trend in MAP between three groups 

over time. Two analytical methods, GEE and Gaussian 

copula regression were compared. Unadjusted and adjusted 

estimates with 95% confidence intervals and p-values were 

reported for both GEE and Gaussian copula regression. 

Gaussian copula regression and GEE were performed using 

the gcmr and geepack packages in R software version 4.1.0. 

All statistical tests were two-sided at α=0.05 level of 

significance. 

2.4. Generalized Estimating Equations 

Many simple approaches exist for handling repeated data 

and analysis, but the limit is the inability to include 

covariates. GEE is a method to fit a marginal model for 

longitudinal data analysis, and it has been widely used in 

biomedical and clinical trial research. [26, 27] The GEE is 

based on a quasi-likelihood function and provides robust 

estimates of the parameter. [28] In Generalized Estimating 

Equations, the within-subject correlation structure is treated 

as a ‘nuisance’ variable (i.e., as a covariate). [29] GEE has 

many features 1) The variance-covariance matrix of 

responses is treated as nuisance parameters in GEE and 

therefore this model fitting turns out to be easier than another 

approach of mixed-effect models. 2) Specifically, if the 

treatment effect is of primary interest to the research study, 

the GEE approach is preferred. 3) GEE relaxes the 

distribution assumption and only needs the correct 

specification of marginal mean and variance as well as the 

link function which connects the covariates of interest and 

marginal means. [30-34] 

However, generalized estimating equations are still 
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controversial in many aspects, like some issues with 

inconsistent estimation of within-subject correlation 

coefficients under a misspecified “working” correlation 

structure. [35] The estimation of the correlation coefficients 

using the moment-based method is not efficient. Such 

limitations lead investigators or researchers to actively work 

on this area to develop novel methods. Many alternative 

methods for estimating the correlation coefficients have been 

offered; among those, one method was based on the 

“Gaussian” estimation approach. [20, 21] 

2.5. Gaussian Copula Regression 

There are different types of copulas used in modeling. The 

Gaussian copula under the elliptical copula family has been 

successfully employed in several complex applications 

arising, for example, in repeated data analysis. For 

longitudinal data applications, elliptical copulas are more 

useful than Archimedean copulas. [36] Elliptical copulas 

have a correlation structure described with a correlation 

matrix that can handle the time-series behavior of repeated 

data. Copula function has some effect on the shape of the 

joint distribution, so an appropriate and reasonable copula 

function should be selected because the properties exhibited 

by different copula functions will vary. [19] 

The regression model is expressed as 

�� = 	���� , 	�; ��, 
 = 1,2,3, … , �.	           (1) 

Where g (.) is a suitable function of the repressors �� and 

of an unobserved stochastic variable	�, denoted as the error 

term. The regression model (1) is known up to a vector of 

parameters λ. 

The useful choice of g(.) is 

��	�	��
��	�	ɸ	�∈�	�;	��,

	
 = 1,2,3, … . , �.	         (2) 

∈�	is a standard normal variable and  �	�. ; �� =  	�. |�� ; 	�� 

and ɸ(.) are the cumulative distribution functions of �� given 

�� and of a standard normal variate respectively. [22] 

The Gaussian copula was first proposed for modeling 

selectivity in the context of continuous but non-normal 

distributions. Gaussian copula regression provides a general 

framework for modeling outcome variables that may belong 

to any distribution family. It is flexible enough to allow for 

both positive and negative dependencies. The dependence 

observed can be expressed with a convenient working 

correlation structure like autoregressive or exchangeable. [21, 

22, 24] Inference for continuous responses is carried out 

through the likelihood approach, for non-continuous 

responses, numerical approximations are used. 

3. Results 

A total of 93 male patients were randomized for the study 

into three groups, with 31 patients in Group 1, 31 patients in 

Group 2, and 31 patients in Group 3. Of these, 2 patients 

were excluded in Groups I and II, and 1 in Group 3, 

respectively, after randomization. [7] For analysis, 88 male 

patients were included aged between 18 and 67 years. The 

mean age of the patient is 39 years (SD 12. 2). Table 1 

describes the summary statistics of baseline demographic and 

other characteristics of study patients who were allocated into 

three groups receiving systemic morphine, epidural morphine, 

and intrathecal morphine. We found that only hypertension 

was significantly associated with the group (P = 0.049). 

Table 2 describes the mean arterial pressure that was 

compared between groups at each time point. We found a 

statistically significant difference between groups on MAP at 

1.5 hours. Figure 1 shows the correlation between sets of 

time points on the MAP. The correlogram allows that to see 

which pairs have the highest correlation. Figure 2 explains 

graphically how the changes vary over time at thirteen-time 

points between the three groups. From there, it was observed 

that until 30 minutes, there were no major changes between 

groups. After 30 minutes, there is a drastic drop in the mean 

arterial pressure for the patients in the intrathecal morphine 

group compared to systemic morphine and epidural morphine. 

GEE analyses were done by assuming common four 

correlation structures, namely independence, autoregressive, 

exchangeable, and unstructured. The time at which repeated 

measurements have been taken for each patient and the 

treatment groups of the patients were considered factors 

(time and group respectively). In Table 3, unadjusted GEE 

analysis was carried out for various correlation structures 

considering the factors time, group, and an interaction term 

of groups over time. There is a significant change over time 

in mean arterial pressure, and intrathecal morphine was 

shown to have a reduction in mean arterial pressure when 

compared to systemic morphine, assuming independence and 

exchangeable correlation structures. Since the presence of 

hypertension among the patients showed a significant 

association between groups from the baseline analysis, 

hypertension was considered in the adjusted GEE model 

along with time, groups, and interaction between groups and 

time which is given in Table 4. Similar to the results of the 

GEE unadjusted model, in the GEE adjusted model, there 

was also a significant change in the mean arterial pressure 

over time and hypertension. 

The unadjusted and adjusted Gaussian copula regressions 

were performed in Tables 5 and 6 respectively. There was a 

significant reduction in mean arterial pressure over time. In 

addition, in the unstructured correlation structure, over time 

the intrathecal morphine group had a significant reduction in 

the mean arterial pressure compared to the systemic 

morphine group. The Gaussian copula was an efficient 

statistical method to capture this finding in unadjusted and 

adjusted models, but GEE failed to identify it. 

The goodness of fit comparison is given in Table 7. The 

AIC and CIC criteria measures were used to select the 

optimal correlation structure under Gaussian copula 

regression and GEE respectively. The goodness of fit criteria 

may not select the same correlation structure as the method 

of assessing each criterion differs. An unstructured 

correlation structure from Gaussian copula regression and an 

autoregressive correlation structure from GEE were found to 
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be optimal models as they have smaller values. Overall, there 

was no major difference in the performance of the two 

methods. 

 

Figure 1. Correlation matrix plot (Correlogram). Positive correlations are displayed in a green scale while negative correlations are displayed in a pink scale. 

Correlation between each time points of mean arterial pressure (MAP) was given. 

 

Figure 2. Line plot showing mean arterial pressure change over time between three groups with 95% confidence interval. 
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Table 1. Baseline demographic and other characteristics of study patients (n=88). 

Variable 
Systemic morphine (0.1mg/kg) 

(n=29) 

Epidural morphine (3mg) 

(n=29) 

Intrathecal morphine 

(150µg) (n=30) 
p-value 

Age (years)* 38.17±11.90 40.69±12.93 39.47±12.12 0.740 

BMI (kg/m2)* 24.82±3.31 24.72±3.83 25.63±4.28 0.604 

Previous surgery    

0.620 Yes 11 (37.9) 20 (69.0) 17 (56.7) 

No 18 (62.1) 9 (31.0) 13 (43.3) 

Allergies    

0.123 Yes 1 (3.4) 3 (10.3) 0 (0.0) 

No 28 (96.6) 26 (89.7) 30 (100.0) 

Alcohol consumption    

0.553 Yes 4 (13.8) 7 (24.1) 7 (23.3) 

No 25 (86.2) 22 (75.9) 23 (76.7) 

Smoker    

0.373 Yes 4 (13.8) 8 (27.6) 8 (26.7) 

No 25 (86.2) 21 (72.4) 22 (73.3) 

Diabetes Mellitus    

0.121 Yes 4 (13.8) 6 (20.7) 1 (3.3) 

No 25 (86.2) 23 (79.3) 29 (96.7) 

Hypertension    

0.049 Yes 7 (24.1) 5 (17.2) 1 (3.3) 

No 22 (75.9) 24 (82.8) 29 (96.7) 

BMI: Body Mass Index; SD: Standard Deviation. 

Values are presented as number (percentage) and p-value is obtained from the Chi-square test and Fisher’s exact test (less cell count). 

*Values are presented as Mean ± SD and p-value is obtained from One-way ANOVA. 

Table 2. Summary statistics for hemodynamic parameter mean arterial pressure. 

Time points 

Systemic morphine (0.1mg/kg) 

(n=29) 

Epidural morphine (3mg) 

(n=29) 

Intrathecal morphine (150µg) 

(n=30) p-value 

Mean±SD Mean±SD Mean±SD 

Baseline 96.69±10.70 94.10±6.72 96.40±6.35 0.419 

at 5 mints. 89.34±11.06 87.24±11.42 87.67±12.61 0.771 

at 30 mints 90.07±10.42 86.72±10.50 84.70±10.32 0.143 

at 1 hour 89.21±9.22 87.07±10.65 84.53±7.96 0.163 

at 1.5 hours 90.24±7.94 86.83±9.07 84.27±7.17 0.021 

at 2 hours 88.52±6.51 88.69±7.69 86.93±6.60 0.565 

at discharge 88.76±7.74 88.21±8.04 86.80±6.81 0.590 

on arrival 89.97±8.06 87.55±7.82 86.50±6.39 0.195 

at 2 hours after arrival 90.00±8.11 87.69±8.48 85.13±7.54 0.073 

at 4 hours 88.28±6.35 87.86±8.33 86.13±7.12 0.492 

at 6 hours 88.90±8.26 87.59±7.65 85.67±7.13 0.273 

at 12 hours 88.17±8.08 88.83±7.76 85.33±6.56 0.168 

at 24 hours 89.66±7.22 89.21±7.82 87.70±6.92 0.563 

*SD: Standard Deviation. 

Table 3. Unadjusted parameter estimates using a generalized estimating equation for mean arterial pressure. 

Variable 

Correlation structure 

Independence Autoregressive [AR (1)] Exchangeable Unstructured 

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value 

Time -0.22 (-0.37,-0.08) 0.001 -0.51 (-0.66, -0.36) 0.001 -0.20 (-0.31,-0.08) 0.001 -0.31 (-0.44, -0.19) 0.001 

Group         

Epidural morphine -1.55 (-4.85, 1.74) 0.356 -1.54 (-4.61, 1.54) 0.328 -1.45 (-4.80, 1.64) 0.356 -1.87 (-9.01, 5.26) 0.607 

Intrathecal morphine -3.08 (-6.05,-0.10) 0.042 -2.16 (-5.03, 0.70) 0.140 -3.10 (-6.01,-0.16) 0.040 -1.33 (-7.97, 5.32) 0.696 

Systemic morphine Ref.  Ref.  Ref.  Ref.  

Group * Time         

Epidural morphine * 

Time 
0.22 (-0.13, 0.56) 0.223 0.18 (-0.19, 0.56) 0.340 0.28 (-0.12, 0.56) 0.223 0.18 (-0.12, 0.49) 0.249 

Intrathecal morphine * 

Time 
0.003 (-0.34, 0.35) 0.983 -0.11 (-0.47, 0.25) 0.542 0.007 (-0.31, 0.38) 0.983 -0.04 (-0.37, 0.28) 0.795 

Systemic morphine * 

Time 
Ref.  Ref.  Ref.  Ref.  

*95% CI: 95% Confidence Interval 
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Table 4. Adjusted parameter estimates using a generalized estimating equation for mean arterial pressure. 

Variable 

Correlation structure 

Independence Autoregressive [AR (1)] Exchangeable Unstructured 

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value 

Hypertension         

Yes 5.12 (1.55, 8.68) 0.004 5.82 (2.70, 8.94) 0.0002 5.12 (1.55, 8.68) 0.004 6.81 (3.55, 10.1) 0.001 

No Ref.  Ref.  Ref.  Ref.  

Time 
-0.30  

(-0.55, -0.04) 
0.022 

-0.53  

(-0.82, -0.23) 
0.0005 

-0.30  

(-0.55, -0.04) 
0.022 

-0.35  

(-0.60, -0.10) 
0.006 

Group         

Epidural morphine 
-2.72  

(-6.99, 1.54) 
0.210 

-2.44  

(-6.28, 1.41) 
0.213 -2.72 (-6.99, 1.54) 0.210 

-2.19  

(-5.93, 1.54) 
0.249 

Intrathecal morphine 
-2.04 (-6.12, 

2.03) 
0.326 

-0.23  

(-3.91, 3.44) 
0.900 -2.04 (-6.12, 2.03) 0.326 

-0.73  

(-4.17, 2.70) 
0.675 

Systemic morphine Ref.  Ref.  Ref.  Ref.  

Group * Time         

Epidural morphine * Time 0.21 (-0.13, 0.56) 0.222 
0.18  

(-0.19, 0.56) 
0.333 0.21 (-0.13, 0.56) 0.222 0.16 (-0.14, 0.48) 0.291 

Intrathecal morphine * 

Time 

0.003  

(-0.34, 0.35) 
0.983 

-0.11  

(-0.47, 0.25) 
0.549 

0.003  

(-0.34, 0.35) 
0.983 

-0.06  

(-0.40, 0.26) 
0.682 

Systemic morphine * Time Ref.  Ref.  Ref.  Ref.  

*95% CI: 95% Confidence Interval 

Table 5. Unadjusted Gaussian copula regression estimates for mean arterial pressure. 

Variable 

Correlation structure 

Independence Autoregressive [AR (1)] Exchangeable Unstructured 

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value 

Time 
-0.22  

(-0.36,-0.09) 
0.001 -0.39 (-0.60,-0.19) 0.001 -0.22 (-0.32,-0.13) 0.001 -0.21 (-0.36,-0.05) 0.016 

Group         

Epidural morphine 
-1.55  

(-2.78,-0.33) 
0.355 -1.54 (-3.83,0.74) 0.334 -1.50 (-4.69,1.58) 0.353 -2.46 (-5.83,0.89) 0.151 

Intrathecal morphine 
-3.07  

(-4.29,-1.86) 
0.042 -2.68 (-4.95,-0.41) 0.069 -3.09 (-6.19,-6.19) 0.041 -2.63 (-6.01,0.75) 0.117 

Systemic morphine Ref.  Ref.  Ref.  Ref.  

Group * Time         

Epidural morphine * Time 0.21 (-0.10,0.54) 0.223 0.19 (-0.29,0.68) 0.257 0.21 (-0.01,0.45) 0.222 -0.07 (-0.36,0.22) 0.564 

Intrathecal morphine * Time 
0.003  

(-0.31,0.32) 
0.983 -0.06 (-0.55,0.41) 0.692 0.003 (-0.22,0.23) 0.983 -0.25 (-0.55,0.04) 0.044 

Systemic morphine * Time Ref.  Ref.  Ref.  Ref.  

*95% CI: 95% Confidence Interval 

Table 6. Adjusted Gaussian copula regression estimates for mean arterial pressure. 

Variable 

Correlation structure 

Independence Autoregressive [AR (1)] Exchangeable Unstructured 

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value 

Hypertension         

Yes 5.11 (3.71,6.52) 0.004 5.42 (2.86,7.97) 0.001 5.11 (1.55,8.67) 0.005 4.21 (-0.80,9.22) 0.050 

No Ref.  Ref.  Ref.  Ref.  

Time 
-0.29 (-0.52,-

0.07) 
0.022 -0.43 (-0.76,-0.09) 0.001 -0.29 (-0.46,-0.13) 0.022 -0.10 (-0.35,0.14) 0.374 

Group         

Epidural morphine 
-2.72 (-5.24,-

0.19) 
0.210 -2.56 (-6.51, 1.38) 0.187 -2.72 (-6.16,0.72) 0.212 -1.85 (-6.42,2.70) 0.368 

Intrathecal morphine -2.04 (-4.56,0.48) 0.326 -1.14 (-5.09,2.81) 0.540 -2.04 (-5.52,1.44) 0.326 0.39 (-4.25,5.04) 0.837 

Systemic morphine Ref.  Ref.  Ref.  Ref.  

Group * Time         

Epidural morphine * Time 0.21 (-0.10,0.53) 0.222 0.19 (-0.27,0.67) 0.247 0.21 (-0.01,0.45) 0.223 -0.14 (-0.45,0.17) 0.312 

Intrathecal morphine * 

Time 
0.003 (-0.31,0.31) 0.983 -0.06 (-0.53,0.40) 0.711 0.003 (-0.22,0.23) 0.983 

-0.37 (-0.70,-

0.05) 
0.009 

Systemic morphine * Time Ref.  Ref.  Ref.  Ref.  

*95% CI: 95% Confidence Interval 
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Table 7. Goodness of fit criteria. 

Correlation structure Gaussian copula regression AIC (smaller is better) Generalized Estimating Equation CIC (smaller is better) 

Independence 8114 29.3 

Autoregressive [AR(1)] 7647 4.67 

Exchangeable 7647 10.5 

Unstructured 7277 7.76 

 

4. Discussion 

The performance of two statistical methods was assessed 

with application to repeated data from a RCT study with an 

outcome of mean arterial pressure. In the present study, 

Gaussian copula regression was shown to be an efficient 

method to capture the significant findings. Similar finding of 

Gaussian copula regression via vector generalized linear 

model (VGLM), which was found to be more efficient than 

GEE. [37] GEE estimates using autoregressive correlation 

structure were compared to estimates obtained from Gaussian 

copula regression with autoregressive correlation structure. 

[24] Misleading estimates can be avoided when using 

maximum likelihood estimation by Gaussian copula 

regression, which is a major strength if the sample size is 

small. [38] 

Many statistical procedures with maximum likelihood 

estimation can be used to analyze the repeated data, but they 

may not be as robust as Gaussian copula regression. For 

instance, linear mixed-effects models are shown to have the 

impossibility of joint modeling. [23] In this study, we 

compared all correlation structures between two statistical 

methods. However, choosing the same optimum correlation 

structure for two methods differs due to goodness of fit 

criteria, which was found to be a limitation. [39] 

In this study, the Gaussian copula regression identified certain 

significantly associated variables using maximum likelihood 

estimation that even the widely used GEE failed to capture using 

quasi-likelihood estimation. Although comparisons were made 

between two different methods of estimation, the model showed 

similar performance comparatively. From this study, we can 

find that over time, intrathecal morphine plays a more 

significant role in the reduction of mean arterial pressure post-

surgery than systemic morphine. 

5. Conclusion 

This study focused on analyzing and comparing the 

findings of GEE, which uses quasi-likelihood estimation, 

and Gaussian copula regression, which uses maximum 

likelihood estimation, when applied to repeated data from a 

randomized controlled trial. GEE and Gaussian copula 

regression are highly comparable and lead to valid results. 

In conclusion, both methods showed similar performance. 

An alternative to GEE that uses quasi-likelihood estimation, 

Gaussian copula regression, identifies a few more 

significant variables using the maximum likelihood method 

of estimation, but GEE fails. 
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